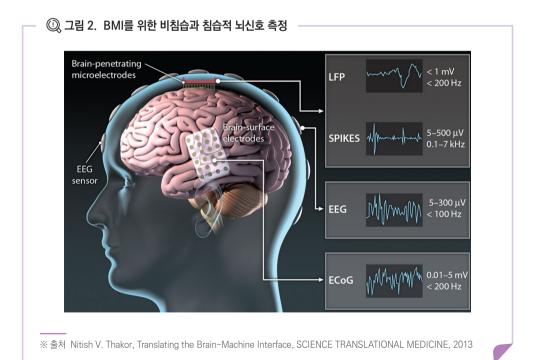


인간-기계 상호적응형 BMI기술 대한 다 한국과학기술연구원 바이오닉스연구단

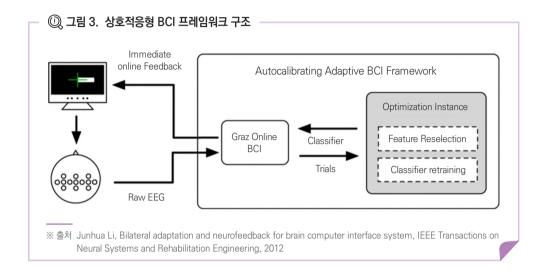
선정배경


- ♥ BMI(Brain-Machine Interface)기술은 사람의 생각만으로 외부기기 및 환경을 제어할 수 있는 차세대 인터페이스 기술로 주목
 - ※ 뉴욕타임즈는 뇌-컴퓨터 인터페이스 기술을 21세기 8대 신기술로 선정
- ☑ BMI 기술은 사지마비 환자의 외부 의사소통을 지원하기 위한 기술에서 시작되었으며, 정신질환 진단, 노약자와 장애인들의 재활 및 생활보조 영역으로 확대
- ☞ 향후 BMI기술은 인공지능, IoT기술 등과 접목하여 일상가전, 로봇 등 주변기기 제어분야에 널리 활용될 것으로 기대

BMI 기술

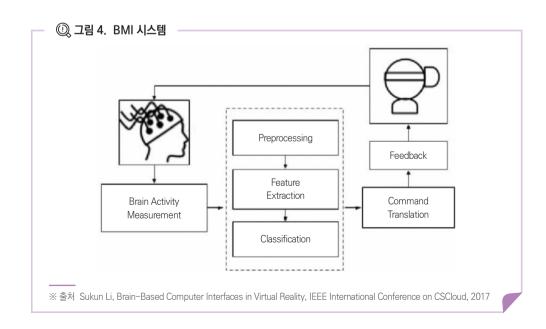
02

- ◎ (정의) 사람 또는 동물의 뇌에서 보내는 생각, 의도, 감정 등의 신호를 제어명령으로 변환하여, 다양한 외부기기들을 통제하는 기술을 의미
- (뇌전도 측정) 뇌에서 보내는 신호를 측정하기 위해서 일반적으로 뇌의 전기적 반응인 뇌전도 (EEG: electroencephalography)를 이용하며, 측정부위에 따라 침습형(invasive)과 비침습형 (non-invasive)으로 구분
 - ※ 연구 목적에 따라 뇌의 활동의 따른 혈류량의 변화를 이미징하는 fMRI(기능성 자기공명영상)나 fNIRS(기능 근적외선 분광법)가 이용되는 경우도 있으며, 본고에서는 뇌전도(EEG) 기반의 BMI 기술을 중심으로 설명
 - (침습형 BMI) 외과적 수술을 통해 두개골 속에 전극(ECoG)이나 마이크로칩(LFP)을 이식하여 뇌파를 측정하는 방식
 - ※ 신호의 질과 시공간 해상도가 뛰어나지만, 뇌 손상의 위험이 있고 장기간 사용이 어려워 주로 연구용으로 사용
 - (비침습형 BMI) 두피에서 헤드셋 장비의 형태로 측정(Scalp EEG)하는 방식 ※ 침습형에 비해 상대적으로 잡음이 심하여 신호의 질은 떨어지지만, 사용법이 간편하여 실용화가 용이

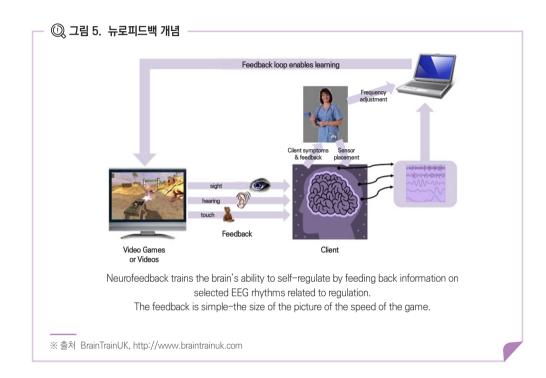


03

Weekly TIP

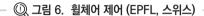

(상호적응 BMI) 사용자의 뇌에서 나오는 신호를 BCI(Brain Computer Interface) 시스템을 통해 실시간으로 분석하고 해석의 결과를 사용자가 피드백 받음으로써, BMI 시스템 성능을 향상

② (BMI 시스템 훈련) BMI 시스템이 되전도를 해석하기 위한 훈련과정은 전처리과정*, 특징정보추출**, 분류기 생성***으로 구성

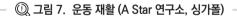

*(EEG signal preprocessing) 잡음 제거, 채널, 주파수 및 시간역 선택

- **(Feature extraction) 시스템이 사용자의 의도 및 상태를 예측하는데 사용할 수 있는 정보 추출
- ***(Classification) 추출된 정보를 바탕으로 사용자의 의도 및 상태분석 결과 도출

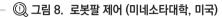
(사용자 훈련) BMI 시스템 성능향상을 위해서는 정교한 알고리즘과 더불어, 사용자가BMI 시스템이 인식하기 쉬운 뇌전도 패턴을 생성해야 가능

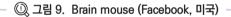

- 자신의 현재 뇌전도를 시각, 청각, 촉각 등으로 알려주는 뉴로피드백(Neurofeedback)을 통해 BMI 시스템에 적합한 뇌전도 생성훈련이 필요

해외 연구동향


03

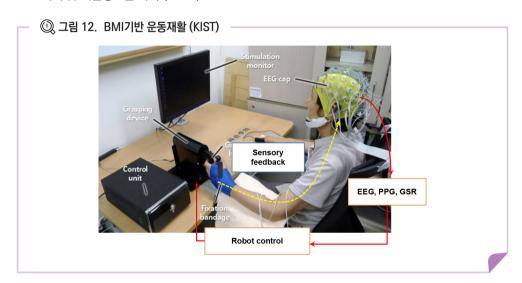

의 소위스 EPFL 연구팀에서는 뇌파를 활용해 전동휠체어의 방향을 제어하여 장애인의 보행을 보조하는 기술을 개발 (2012)

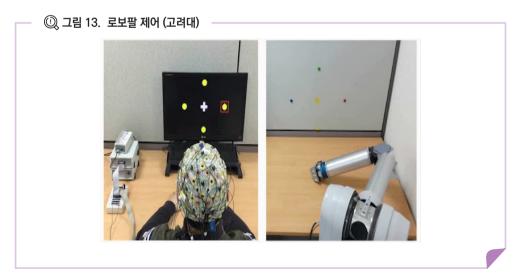

♥ 싱가폴 A Star 연구소는 뇌졸중 환자의 운동의지를 뇌파를 통해 분석함으로써 로봇을 제어하는 재활 시스템 개발 ('2014)


의 미국 University of Minnesota 연구팀에서는 운동상상(Motor Imagery)*으로 로봇팔을 제어하여 물건을 선반에 올리고 내리는 것을 구현 (2016)

* 운동을 상상할 때의 뇌파변화를 이용하여 외부기기를 제어하는 기술

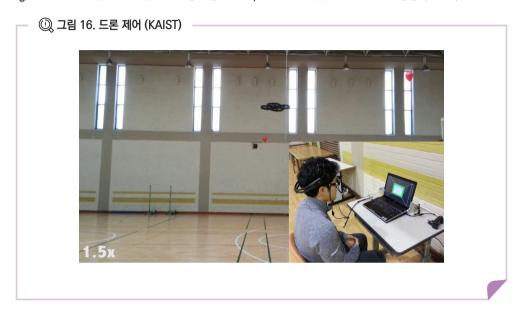
♥ 미국 Facebook은 증강현실(AR, Augmented Reality)장치를 통해, 분당 100단어를 입력할 수 있는 BMI 기술을 개발 중 ('2017)


② Cyberkinetics는 침습형 Brain Implant, BainGate를 개발하여 컴퓨터 커서 및 로봇팔을 생각만으로 제어 ('2012)

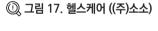

MIT 연구팀에서는 로봇이 실수할 때 관찰자의 뇌파에서 나오는 EP(Error potentials)를 이용해서 생각만으로 로봇을 가르칠 수 있음을 발표 ('2017)

국내 연구동향

☑ 고려대 연구팀은 운동상상(MI, Motor Imagery)으로 로봇팔을 제어하는 모습을 시연 ('2014)

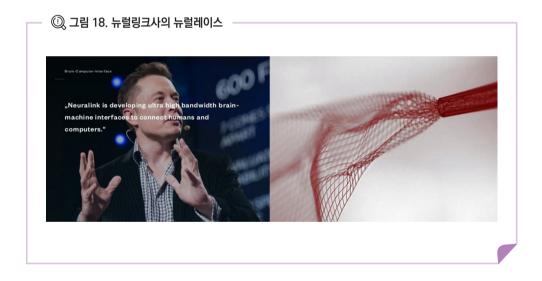


- ♥ 한양대 연구팀은 LED를 이용한 시각적 자극을 제시하였으며, 세계 최고성능의 SSVEP기반 스펠러를 개발(2015)
 - ※ SSVEP(Steady-state visual evoked potentials): 특정한 주파수의 시각적 자극에 자연적으로 반응해 발생하는 뇌파를 이용해 사용자가 보고 있는 자극을 검출하는 방법



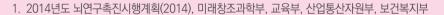
- ♥ UNIST 연구팀은 P300을 기반으로 TV 등 가전제품을 제어하는 기술을 개발하였으며, ㈜TSB 연구팀과 협업하여 증강현실기반 로보청소기 뇌파제어를 세계 최초로 구현 ('2017)
 - ※ P300 BCI: 특정한 정보에 대한 자극에 반응해 약 300 msec 근처에서 발생하는 크고 뚜렷한 파형의 양 전위를 이용하여 해당 자극을 검출하는 방법

(주) 소소는 뇌파를 통해 자신의 상태를 점검하고, 스트레스 해소를 도와주는 헬스케어 시스템을 개발 ('2017)



0

시사점 및 미래 전망


05

- - 향후 웨어러블 기기나 증강현실 장비를 통해 보다 편리한 방법으로 BMI 기술이 일상에 적용될 것으로 기대
- ♥ 현재 직접 뇌에 전국을 심는 침습적(invasive) 방법은 사지마비 환자 등을 위한 제한된 범위에서 사용되고 있지만, 향후 뉴럴 레이스(Neural lace)* 같은 뇌 임플란트기술의 발달로 인해, 일반인들도 뇌기능 향상을 위한 목적으로 사용할 것으로 기대
 - ※ 엘론머스크가 최근에 인수한 스타트업 뉴럴링크(Nerualink)사가 개발한 뇌 신호를 읽고 자극을 줄 수 있는 초박형 메쉬형태의 뇌 임플란트

- ② BMI 기술이 확산되면서 개인의 생각 및 정보의 해킹위험에 대비 필요
 - 윤리적 측면에서 어느 범위까지 허용할지에 대해 사회적 논의를 시작해야 하며, 뇌의 해킹을 방지하기 위한 제도적, 기술적 대비가 필요

- 2. 2017년 미래유망기술 프로그램, 뇌기능향상기술(2017), 한국연구재단
- 3. 뇌-컴퓨터 인터페이스(BCI) 기술 및 개발 동향(2011), 한국전자통신연구원
- 4. 문화기술(CT) 심층리포트: BCI기술동향(2011), 한국콘텐츠진흥원
- 5. 인터넷 및 정보보호 10대 이슈 전망(2013), 한국인터넷진흥원
- 6. 조호현,전성찬. (2012). 뇌전도 기반 뇌-컴퓨터 인터페이스 기술. 한국통신학회지 (정보와통신), 29(7), 47-55.
- 7. Li, J., & Zhang, L. (2010). Bilateral adaptation and neurofeedback for brain computer interface system. Journal of neuroscience methods, 193(2), 373–379.
- 8. Vidaurre, C., Schlogl, A., Cabeza, R., Scherer, R., & Pfurtscheller, G. (2006). A fully on-line adaptive BCI. IEEE Transactions on Biomedical Engineering, 53(6), 1214–1219.
- 9. Wolpaw, J., & Wolpaw, E. W. (Eds.). (2012). Brain-computer interfaces: principles and practice. OUP USA.