

SOC와 ICT 융합을 통한 인프라 노후화 대책 이현숙 「융합정책연구센터

선정배경

01

- ☞ 저출산, 고령화 등과 같은 인구문제와 함께 도시기반시설의 노후화로 인한 도시문제에 대한 대책이 필요할 시점
 - 저출산, 고령화 등으로 인한 주택의 수요가 감소하고 있으며 신규 도시개발 및 주택의 양적 공급 위주의 정책으로 기존 도시의 유지관리에 대한 대책이 필요
 - 우리나라 도시 기반시설은 '70년대 집중적으로 개발되었으며 특히 서울의 인프라 노후화로 인한 건축물 붕괴, 상하수도 누수, 지반침하 등 다양한 도시문제를 야기
- 도시 인프라 노후화 문제를 해결하기 위해 최근 각광 받고 있는 스마트시티 등도 노후화 된 도시를 재생하기 위한 대안으로 제시
 - 과학기술을 활용한 노후화된 도시 인프라의 유지관리 및 복구에 대한 대책 마련도 필요
 - 도시혁신 및 미래성장 동력을 창출하기 위해 ICT 기술을 기반으로 한 '스마트시티'도 신규도시 개발, 기존도시 스마트화 및 확산, 노후도시의 스마트시티형 도시재생 등을 목표
- ◎ 일본, 미국 등 해외 선진국에서는 도시 인프라 노후화 문제를 과학기술로 해결하기 위한 노력
 - 일본은 도시 인프라 노후화에 대비하기 위해 노후화 실태조사 및 대응 매뉴얼을 마련하고 '14년 내각부를 중심으로 노후 인프라 유지보수를 위한 연구개발에 집중 투자
 - 미국은 도시 노후화로 인한 교량 붕괴 등으로 인명피해가 발생하자 노후 인프라에 대한 다면적인 접근 방식 도입
- ♥ 이에, 과학기술로 노후화된 도시의 생명력을 연장해 주는 방안 및 관련 정책에 대해 살펴보고자 함

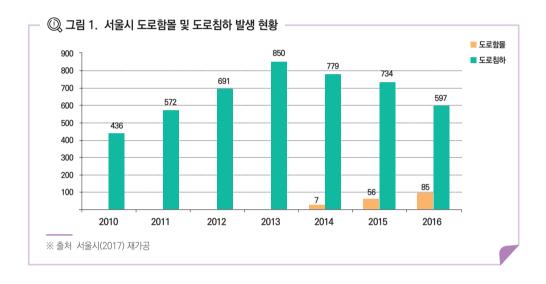
우리나라 인프라 노후화 현황

02

- (마부분 '70~'90년대 집중 개발된 우리나라 인프라 시설은 최근 급속한 노후화로 시민의 안전을 위협 (안종욱, 2018)
 - 우리나라의 30년 이상 된 1,2종 시설물 및 인프라의 증가로 도시 인프라시설의 노후화가 급격히 진행
 - * 30년 이상 경과된 시설물 개수: 1,674개(2010)→2,837개(2015)→3,412개(2016) 30년 이상 경과된 인프라: 수자원 20.5%, 교량 8%, 도로·철도 6.3%(차미숙(2016) 재인용)
 - 노후화된 시설물일수록 성능이 약화되어 시설물의 안전등급이 낮아져 시민의 안전을 위협 ※ 서울 지하철 1~4호선 97개 역사 중 35.1%가 안전기준상 피난시간 초과 역사(이영환, 2016)
- 서울시의 경우 도시 인프라의 70% 이상이 '70~'80년대 집중적으로 건설 되어 유지관리 비용이 급증할 전망 (서울시 보도자료, 2017. 6.12)
 - 서울시의 30년 이상 노후화 된 인프라 비율이 '16년 33%로 20년 뒤 86%까지 급증할 전망

▼ 표1. 서울시의 30년 이상 경과된 시설물 현황								
	0-10년	11-20년	21-30년	31-40년	41-50년	51년 이상	합계	30년 이상 경과된 시설물 비율
도로시설물 ¹⁾	64	159	169	122	57	4	575	31.8%
상수도 관로	2,039	4,541	5,778	1,170	121	-	13,649	9.5%
하수도 관로	1,885	1,338	2,218	1,360	380	3,435	10,616	48.6%
지하철 ²⁾	27	186	161	201	20	0	595	37.1%

¹⁾ 교량(한강, 일반), 고가차도, 입체교차, 터널, 지하차도, 복개구조, 공동구, 언더패스 포함, 자치구 관리시설 제외 2) 교량, 터널, 역사 포함 ※출처 서울시 보도자료(2017.06.12) 재가공


- 시설물의 유지관리 비용도 '17년 8,849억 원에서 '27년 2조 7,689억 원으로 급증하여 향후 재정적인 어려움이 예상

- 최근 증가하고 있는 도로함몰 사고의 주요 원인도 도시 인프라 노후화로 지적되는 등 도시 인프라 노후화는 시민의 안전과 직결되는 문제
 - '10년 이후 서울시의 도로함몰 및 도로침하 사고가 급격히 증가

※ 도로함몰: 도시 지역의 시설물 노후화와 굴착복구 공사 등으로 인한 지반 붕괴 현상

도로침하: 지반이나 포장면이 아래로 처지는 현상

- 도로함몰의 주요원인은 상하관로 및 도로시설물의 노후화*가 85% 이상을 차지 (서울시, 2017)
 - * 30년 이상 하수관로(48.7%), 30년 이상 상수관로(7.3%), 30년 이상 도로시설물(29.6%)이 차지

① 그림 2. 서울시 도로함몰 사고

2015. 8 : 종로구 무악동

2015. 8 : 송파구 방이동

※ 출처 서울시 보도자료(2017.06.12.)

03

해외 선진국의 도시 노후화 현황 및 관련 정책

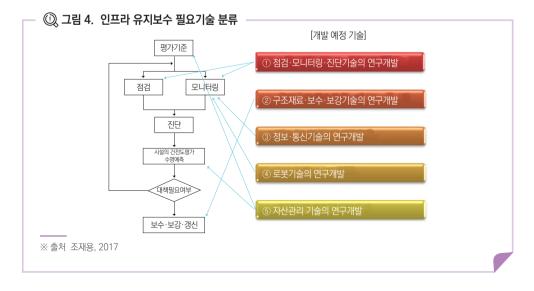
1) 일본

- ② 일본은 2차 세계대전 전후 복구 및 '64년 도쿄올림픽을 계기로 '50년 중반부터 본격적인 도시 인프라 정비를 추진 (조재용, 2017)
 - 2차 세계대전 이후 분야별* 5개년, 7개년 계획을 수립하고 체계적인 인프라 정비를 진행하였으며, '03년부터 통합사회자본정비 중점계획으로 일원화하며 인프라 정비
 - * 도로정비 5개년('54년~), 항만정비 7개년('61년~), 치수사업 7개년('60년~), 하수도정비 7개년('63년~), 공항정비 7개년('67년~)
 - '80년대에는 서양 선진국 수준으로 인프라가 정비되며 세계수준의 도시로 성장
- ② 고도성장기('65~'70년대) 집중적으로 개발된 도시 인프라에 대한 노후화 및 자연재해로부터의 안정성 문제를 야기
 - 고도성장기 집중 개발된 도로, 상하수도 등 도시 인프라는 현재 50년 이상 경과되면서 유지관리 및 생산에 막대한 재원이 소요될 것으로 전망 (차미숙, 2016)

표2 . 인프라 7	건설 경과 연수 비	율('13년) 및 전망				
구분	2013 7371	40년 경과 -	50년 경과 비율			
ᡠ	30년 경과		2013년	2023년	2033년	
도로(교량) ¹⁾	67%	43%	18%	43%	67%	
- 터널 ²⁾	50%	34%	20%	34%	50%	
하수도관리시설(수문 등)	64%	43%	25%	43%	64%	
하수도 관거	24%	9%	2%	9%	24%	
항만안벽 ³⁾	58%	32%	8%	32%	58%	

1) 2m 이상 70만개 가운데 건설연도 불분명한 30만개 미포함 2) 건설연도 불분명한 250개 미포함 3) 건설연도 불분명한 100개 미포함 ※출처 조재용(2017), 차미숙(2016) 재가공

- 또한 일본은 도시 인프라 노후화와 더불어 거대지진 발생과 같은 자연재해에 취한한 지반과, 인구 감소에 따른 빈집 증가 등 인프라와 관련된 사회문제가 심화



- ☞ 최근 인프라 노후화로 인한 인명사고가 발생하자 적극적인 인프라 노후화에 관한 정책 패러다임을 전환
 - '12년 '77년에 개통한 아마나시현 츄오 자동차도로의 사사고 터널에서 콘크리트 반자널이 낙하하는 사고가 발생하여 9명의 희생자 발생
 - '13년 '65년 완성된 하마마츠시의 보행자 전용 현수교(다이이치벤텐바시)의 부자재가 파손되어 다리가 기울어지는 사고가 발생
 - 이처럼 노후화로 인한 사고가 발생하기 시작하자 일본은 신규 인프라 확충에 집중하던 인프라 예산을 유지보수 측면으로 전환하기 시작

- ② 일본은 '14년 내각부를 중심으로 인프라 노후화의 유지보수에 대한 대책을 토목기술과 과학기술의 융합을 통해 모색하려 집중 투자 (조재용, 2017)
 - 노후 인프라에 대한 생애주기 비용을 감소하기 위해 ICRT* 기술을 5가지 분야로 분류하여 연간 30억 엔 규모의 60여개 프로젝트를 진행
 - * ICRT: ICT+ IRT(Information and Robot Technology)

2018 May vol.120 SOC와 ICT 융합을 통한 인프라 노후화 대책

▼ 표3. 일본의 노후 인프라 유지보수 기술개발 개요					
구분	목표	연구개발시기	연구비('17년)		
점검·모니터링·진단 기술	· 인프라 노후화 데이터를 효율적으로 획득하고 건전도 평가, 수명 예측을 통해 대상 인프라 시설 선정	'14년~'18년	7.1억 엔		
구조재료·보수·보강기술	· 재료공학에 기초한 인프라 모니터링 툴 개발과 손상 노화기구를 해명. 저비용 보수·보강·갱신기술 확립, 구조체의 수명추정 방법 완성	'14년~'18년	3.3억 엔		
정보·통신기술	· 인프라의 거동을 포괄적높은 빈도로 모니터링 하는 기술 확립	'14년~'18년	4.0억 엔		
로봇기술	· 차세대 사회 인프라용 로봇의 적용 장소에서 검증·평가 및 도입	'14년~'18년	8.8억 엔		
자산관리 기술	· 도로 교량을 중심으로 자산관리 시스템을 구축. 지자체에 적용 가능한 자산관리 시스템을 구축. 해외전개를 위한 인적조직 구축	'14년~'18년	6.4억 엔		
※추천 ㅈ돼요/2017) 돼그서					

※출처 조재용(2017) 재구성

2) 미국

- ♥ 노후화 된 인프라의 급증에도 불구 적절한 대처 및 투자 부족으로 인해 인프라 안전성이 위협
 - '80년 이후 준공 후 25~40년 경과된 교량이 붕괴되는 빈번히 발생하면서 시민의 안전을 위협하기 시작
 - ※ '83년 코네티켓주 Miaunus River 교량 붕괴('68년 준공), '87년 뉴욕주 Thruway 교량 붕괴('54년 준공), '07년 미네소타주 Minesota 교량 붕괴('67년 준공), '13년 워싱턴주 Skagit County 교량 붕괴('55년 준공)

① 그림 5. 미국의 교량 붕괴 사고

(b) Minesota 교량 붕괴

※ 출처 SBS NEWS(2013.05.24.), 이영환(2016)

- '88년 이후 미국의 사회기반 시설 안전등급이 지속적으로 악화되면서 이로 인한 유지관리 비용 증가

표4. 미	국 사회기반시설	설의 안전등급 추	-0			
구분	1988	2001	2003*	2005	2009	2013
공항	B-	D	↔	D+	D	D
댐	-	D	ţ	D	С	D
상수도	B-	D	ţ	D-	D-	D
하수도	С	D	ţ	-	D-	D
에너지	_	D+	↓	D	D+	D-
유해 폐기물	D	D+	↔	D	D	D
수로	B(수자원)	D+	ţ	D-	D-	D-
철도	_	-	_	C-	C-	C+
도로	C+	D+	ţ	_	D-	D
교량	_	С	↔	С	С	C+
학교	_	D-	↔	-	D	D
운송	C-	C-	ţ	-	D	D
전체 등급	-	D+	-	D	D	D+
필요 자금	-	\$1.3조	\$1.6조	\$1.6조	\$2.2조	\$3.6조 ('20)

[※]출처 이영환,2016

- ♥ 막대한재정 투입 및 ICT 기술을 접목한 노후 인프라 성능 개선 등을 위한 다면적 접근 시도
 - 성능개선 및 성능관리 기반의 자산관리 계획(MAP-21, '12년)* 도입 및 향후 5년간 약 3,060억 달러 규모의 예산 투자 계획(FAST, '15년)** 발표 (이영환, 2016)
 - * MAP-21 : 국가재정 17.5억 달러 및 340억 달러의 민간투자 유치
 - ** FAST : 5년간('16-'20) 육상교통 시설 성능개선을 위해 약 3,060억 달러 투자
 - 드론 및 위성사진 등을 활용한 인프라의 노후화 감시하고, 크라우드 소싱(Crowd-sourcing) 기법을 통해 도로의 평탄성을 평가하는 등 인프라 관리에 신기술을 접목 (NIA(2017) 재인용)

04

우리나라의 도시 인프라 관련 정책 동향

- ② 우리나라의 인프라 시설에 관한 체계를 안전관리 위주의 사후관리 중심에서 4차 산업혁명 관련 기술을 이용한 선제관리 체계로 전환 도모
 - 국토교통부는 「국토교통 4차 산업혁명 대응 전략(2017)」 도시인프라 시설물의 안전 중심에서 성능중심의 시설물 장수명화 도모
 - 이를 위해 IoT, 클라우드, 드론 등을 활용한 무인 · 원격 SOC 성능정보 수집 및 모니터링 체계 구축 추진 및 빅데이터 분석 · AI를 활용한 선제적 유지관리 추진
- ஓ 효율적인 인프라 관리를 위해 국토교통부와 과학기술정보통신부가 공동 의장으로 한 'SOC−ICT 협의회' 출범
 - 4차 산업혁명 관련 기술을 접목한 '똑똑한 국가 인프라'관리를 통해 노후 인프라로 인한 안전 및 재정적 부담을 감소하기 위하여 산학연관 공동 협의회 구성
 - 협의회는 ICT와 인프라 산업의 대표기업, 연구소, 대학 등 50여개 기관이 참여한 3개 분과로 구성

▼ #5. SOC	C-ICT 협의회 구성		
구분	주요내용		
사업 분과	· 국가 인프라 사업을 담당하는 정부·지자체를 중심으로 분야별 인프라 사업의 정보통신기술(ICT) 적용 우수사례 및 지능화 선도 프로젝트 발굴		
기술 분과	· 인프라 사업에 대한 정보통신기술(ICT) 적용 전략을 도출하고 기술표준을 추진		
정책 분과	· 정보화계획 수립 메뉴얼을 개발하고 관련 법·제도에 대한 개선 방안을 연구		

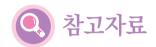
- ☑ 서울시는 ICT 기술을 활용한 노후 인프라의 선제적인 예측관리를 위해 관련 프로젝트를 발족
 - 「서울 인프라 다음 100년을 위한 프로젝트(2017)」를 통해 '단기적 유지보수화 사후관리' 중심의 인프라 관리를 '미래를 대비한 중장기적·선제적 대응'으로 패러다임 전환을 추구

Weekly **TIP**

표6. 서울 인프라 다음 100년 프로젝트 주요내용 구분 주요내용 · 노후 인프라(30년 이상) 전체를 대상으로 5년 주기의 '실태평가 보고서'작성 의무화 선제적 유지관리를 위한 제도 개선 ※ 지자체 최초의 「서울특별시 노후기반시설의 성능개선 및 장수명화 촉진조례」(16.7.)를 제정 · 빅데이터 등 최신 ICT 기술을 접목한 시설물 관리정보 DB 구축을 통한 시설물 상태 및 선제적 유지관리 기술 고도화 유지관리비용 예측·분석으로 '미래예측모델'기술 개발 종합적 투자우선순위 설정 및 · 선제적 유지관리를 위해 향후 5년간 약 7조6백억 원의 비용 발생이 예상되며 이중 86%는 재원 마련 시에서 부담 · 중앙정부, 시민·전문가, 유관기관과의 협업시스템 구축하여 도시 인프라 유지관리 효과 협업 시스템 구축 극대화 추진

※ 출처 서울시 보도자료(2017.06.12) 재구성

- 도시 노후화로 인한 도로함몰 사고가 발생하자 동공탐사 기술을 활용하여 사고를 67% 예방 (서울시 보도자료, 2018.1.29.)


※ 도로함몰 사고: 85건('16년) → 28건('17년)

시사점

- ② '70~'80년대 집중 건설된 우리나라 인프라 시설이 최근 급격한 노후화로 시민의 안전 및 국가 재정을 위협
- - 미국은 드론 및 ICT 기술을 접목하여 인프라의 안정성 향상을 위해 노력
- 우리나라도 인프라의 선제적 관리체계 도입을 위해 인프라 관리에 4차 산업혁명 관련 기술 활용 및 산학연 협의회 출범
- 국민의 안전과 직결되는 인프라 유지관리에 과학기술을 접목하여 신규 인프라 뿐 아니라 기존의 인프라에도 균형있는 정책이 필요

2018 May vol.120 SOC와 ICT 융합을 통한 인프라 노후화 대책

- 1. 안종욱(2018), 노후기반시설 민간투자사업 활성화 방안, 국토정책 Brief, 1-6
- 2. 차미숙(2016), 인프라의 노후화와 현명한 이용, 국토정책 Brief, 1-8
- 3. 이영환(2016), 노후 인프라의 실태분석과 지속가능한 성능개선 정책방향
- 4. 서울시 보도자료 서울시, 노후 인프라 예측 관리로 안전강화, 미래비용 절감 (2017.06.12.) 서울시, 동공탐사 기술혁신으로 도로함몰 67% 줄였다 (2018.01.29.)
- 5. 서울시(2017), 2016 도로관리 기술 백서
- 6. 조재용(2017), 일본 노후 인프라 대응 전략 및 정책적 시사점, 대한건설정책연구원
- 7. 닛케이 BP(2018), 세상 시장을 주도할 크로스 테크놀로지 100, 나무생각
- 8. SBS 뉴스(2013.05.24.), 물에 빠진 자동차…미국 교량붕괴 현장 http://news.sbs.co.kr/news/endPage.do?news_id=N1001800894&plink=COPYPASTE&cooper=SBSNE WSEND (최종접속: 2018.04.30.)
- 9. 한국정보화진흥원(NIA), 혁신성장을 위한 국가 인프라 지능화 추진전략, 2017.11
- 10. 국토교통부, 국토교통 4차 산업혁명 대응 전략, 2017
- 11. 국토교통부 보도자료, 국토부·과기정통부 '지능형 SOC 구축'을 위한 협력체계 가동 (2018.01.30.)

77